Over time, resulting bouts of inflammation permanently damage the myelin sheath and disrupt nerve transmission to and from the brain. When that happens, patients experience dizziness or balance disorders, mobility problems, numbness, fatigue, and even depression.

Currently, there is no cure for MS. Patients are encouraged to try to manage symptoms via stress reduction and treatment with immunosuppressive corticosteroids or other “disease-modifying” therapies (DMTs), such as interferon. At best, these interventions decrease attack frequency and severity, but they are not a cure.

Our Approach

Several LJI investigators are exploring novel approaches to treat groups of autoimmune disorders that include multiple sclerosis. Among them is Professor Amnon Altman, Ph.D., who discovered that an enzyme called protein kinase C theta (PKCθ) is essential for T cell activation and survival. He is now pursuing whether blocking PKCθ activity would benefit patients with MS, rheumatoid arthritis (RA) or other autoimmune diseases.

LJI Professor Anjana Rao, Ph.D., has applied next-generation DNA sequencing technologies to show how loss of proteins of the TET family disrupts “epigenetic” modification of DNA called methylation. DNA methylation is most often associated with gene silencing, and TET proteins catalyze DNA demethylation. Thus, their loss, which is documented in some cancers, could up-regulate genes that foster tumor formation. Interestingly, TET protein loss also provokes expression of inflammatory factors that trigger autoimmunity, suggesting that restoring normal TET protein function could have both an anti-autoimmune or anti-cancer effects.

Crossing Barriers
Specific to MS, an ongoing question is how autoimmune T cells, which are usually kept out of the brain by an impenetrable vascular network known as the blood-brain barrier, gain entry into the central nervous system in the first place. LJI Professor Catherine “Lynn” Hedrick, Ph.D., recently discovered that T cells are granted access to that protected space by other immune cells and by macrophages, a subset of immune cells better known as the immune system’s cleanup crew.

Working in a mouse model of MS, she found that macrophages emit a siren song of chemical signals that attract autoimmune T cells to the central nervous system and act to exacerbate inflammation and disease severity. Analysis of a small pilot study of patients with multiple sclerosis confirmed that the same communications channels may be used to send communiqués between the brain and immune system in human subjects.